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On Gamma Function Inequalities 

By Joaquin Bustoz and Mourad E. H. Ismail* 

To Jerrv Fields, in friendship 

Abstract. We show that certain functions involving quotients of gamma functions are 
completely monotonic. This leads to inequalities involving gamma functions. We also estab- 
lish the infinite divisibility of several probability distributions whose Laplace transforms 
involve quotients of gamma functions. 

1. Introduction. Motivated by Wallis's product 

(1.1) - (1.1) ~~~~~2 1l 2n - 1I) 2n + I) 

Kazarinoff [6] proved that the function 0(n), 

3 -5 . (2n-1) 1 
2 4 6 (2n) Vr(n + 0(n)) 

satisfies 

(1.2) < 0(n) < , n = l,2. 

More generally, set 

(1.3) o(x) = -x + [r(x + i)/r(x + 2)]2 X > -. 

Watson [9] used Gauss' theorem [2, (14), p. 61] to obtain 

f(x) = -x + x2F1(-2- ;X; 1), 

that is, 

(1.4) ?(x) (-2+ 1) 

with the usual notation (a)n = r(a + n)/r(a), that is, 

(a) =1, (a)m = ( + 1) ... ( + m-1), m > O. 

Watson then observed that (1.4) implies that 0(x) is decreasing for x > - 2 and 
@(oX) = 4 and 0(- 4) = 4. This obviously implies the sharper inequalities 

(1.5) 4 < O(X) < X 
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For related inequalities and further references we refer the interested reader to [5] 
and [7]. 

More recently Dutka [1] proved 

(1.6) (1 + 1/2n)1/2 - 1 < 0(n)/n < (1 - 1/2n)1/2 - 1, n = 1,2,..., 

(1.7) <O(n)<(n+1)/(4n+3), n=1,2,.... 

The methods used to prove (1.5), (1.6) and (1.7) are not systematic and do not 
seem to explain why inequalities of this type should exist. Recall the definition of 
completely monotonic functions. 

Definition. A function f(x) is said to be completely monotonic on an interval I if 

(-1)nf(n)(X) > 0 on I. 
Completely monotonic functions are useful in many fields, including mathemati- 

cal analysis [10], probability theory [3] and numerical analysis [11]. 
The purpose of this work is to point out that inequalities like (1.5), (1.6), or (1.7) 

are immediate consequences of the complete monotonicity of certain functions. 
Indeed, one should investigate monotonicity properties of functions involving quo- 
tients of gamma functions and as a by-product derive inequalities of the aforemen- 
tioned type. This approach is simpler and yields more general results. Watson's 
representation (1.4) gave us the clue, because (1.4) shows that @(x) is completely 
monotonic on [- 1, cX). In Section 2 we shall prove 

THEOREM 1. Let 

(1.8) f(x):= (x + c)-112F(x + 1)/F(x + 1) x > max(-',-c). 

Then 
(i) f (x) is completely monotonic on (-c, oo) if c < 4 

(ii) 1/f(x) is completely monotonic on [- 2, X) if c 2 

An immediate corollary is 

COROLLARY 2. The function f(x) is increasing (decreasing) on [- 2, X) (on 

(-c, x)) if c > 12 (C < 14). 

We shall see in Section 4 that Corollary 2 implies (1.5) and (1.7). In Section 2 we 
shall also prove the following generalization of Theorem 1. 

THEOREM 3. Let 

(1.9) a + 1 > b > a, a:= max(-a, -c), ,B:= max(-b, -c) 

and 

(1.10) g(x;a,b,c) = (x + c)abF(x + b)/F(x + a), x > a. 

Then 
(i) g(x; a, b, c) is completely monotonic on (a, x) if c < !(a + b - 1); 
(ii) I/g(x; a, b, c) is completely monotonic for x > / if c > a. 

We now consider inequalities of the type (1.6). Such inequalities really involve the 
function [n + 0(n)]/n, i.e., 

F(X)F(X + 1)/F2(X + 2), x = 1,2,3,.... 
In Section 3 we shall prove Theorems 4, 5 and 6. 
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THEOREM 4. The function 

(1.11) ( 1 1/2 r2(x + 1/2) 
~2xJ F(x)]F(x +1) 

is completely monotonic on (2, cX). 

THEOREM 5. The function 

(1.12) (1 + 1/2x)-112F(X)T(X + 1)/r2(X + 1/2) 

is completely monotonic on (0, oo). 

THEOREM 6. The function 

(1.13) p(x; a, b)= '(x)T'(x ab + ) a, b > O 
IF(x +a)]F(x +b)' 

is completely monotonic on (0, oo). 

Observe that 

(1.14) (8(x) + x)/x = p(x, 2, 2)2 

so Watson's result is a special case of Theorem 6, as we shall see in Section 4. 
Gautschi [4] proved that if 0 < s < 1, x > 1, then 

xl-s < r(x + 1)/r(x + s) < exp[(1 - s)ip(x +(s + 1)/2)], 
+'(z):-'(r(z)/r(z). Recently, Kershaw [8] established the closer bounds 

(1.15) exp[(1 - s) 4 (x + S1/2 )] < r< + ) exp[(1 - s) (x + s + )] 

(1.16) + 2) < ( <+s) [- + ( )/] 

forx > 0 and 0 < s < 1. 
In Section 3, we shall prove the following more general results. 

THEOREM 7. The functions 

(1.17) r(x + s)exp [(1 - x + 
s 

(1.18) r(x + 1)(x + s/2)s-1/Tr(x + s) 
are completely monotonic on (0, oo) for 0 < s < 1. When 0 < s < 1, the functions 

(1.17), (1.18) satisfy (-1)'f (")(x) > 0, x > 0. 

THEOREM 8. Let 0 < s < 1 and x > 0. Then both 

(1.19) r(x + 1) exp[(s _ 1)4(x + S1/2)], 
Jr(x + s) 

and 

(1.20) r(x + s)[X - + (S + )1/2Il-s/r(x + 1) 

are strictly decreasing functions. 

In Section 4 we shall show how Theorems 7 and 8 generalize (1.15) and (1.16). We 
shall also discuss related inequalities and infinitely divisible probability distribu- 
tions. 
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2. Proofs of Theorems 1 and 3. Our proofs rely on the following well-known 
lemma which can be proved by successive applications of the chain rule. 

LEMMA 2.1. The function exp(-h(x)) is completely monotonic on an interval I if 
h'(x) is completely monotonic on I. 

Proof of Theorem 1. First consider the case c < 4. In this case let 

(2.1) h(x):= -lnf(x), 

hence 

(2.2) h'(x) 1 (x + ) _ (x + 1) 

By the above lemma it suffices to show that h'(x) is completely monotonic. Recall 
that A(z):= F'(z)/F(z). The integral representation 

(2.3) ip (4 + -z) - ip ( 2z) = 2 f e-z(1 + e t)-l dt, Rez > 0, 

(see (1) and (3) on page 20 and (1) on page 15 of [2]), gives 

(2.4) h'(x) = f e-2(x+c)tdt - 2 e-(2x+l)t(I + e-')ldt, 

that is, 

h'(x) = 
2(x+c)t [(1 - e/2)2 + 2e-t/2(1 - e 2(c1/4)t)] dt. 

I0 + e&' 

This implies the complete monotonicity of h'(x) when c < 4, since the integrand is 
e- 2,, times a nonnegative function of t. 

When c > 2, we rewrite (2.4) in this form, 

0= e - t -2ct (c+) -h'( x ) = 1 e [2e - e- - e- (2c?)t dt. 

The integrand in the above equation is e- 2xt times a nonnegative function of t, 
hence -h'(x) is completely monotonic. This establishes part (ii). 

Proof of Theorem 3. Since (1 - ,I/x)XA is completely monotonic on (0, cx) for 
A > 0, p > 0, and the product of completely monotonic functions is also completely 
monotonic, it suffices to consider the case c = (a + b - 1)/2. Part (i) will follow if 
we can show that -ln g has a completely monotonic derivative on the interval under 
consideration. Set 

(2.5) ((x):= -In g(x; a, b, (a + b - 1)/2). 

Clearly, 

W_ 2(b - a) + rF(x + a) _ F(x + b) 
2x + a + b - I '(x + a) J(x + b) 

We now apply the integral representation, [2, (14), p. 16], 

(2.6) r(z)/lr(z) = -Y +] (e' - etz)(1 - et)ldt, Rez > 0, 
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y being Euler's constant. This gives 

oo oo e - xt t ='(x) (b - a)] e-[x+(a+b-l)/2]t + | 1 e - {eb - e dt 

= J lt2t (),exp [-t{x + (a + b)/2}] dt 

with w (t) = 2(b - a) sinh(t/2) -2 sinh[(b - a)t/2]. Clearly, 

I 00 
t2n?1 )n1 

w(2t) = F, (b - a) {1 -(b-a 2 n=0 (2n + 1)! - 

shows that w(t) > 0 for t > 0, hence ('(x) is completely monotonic on (a, oo). This 
establishes part (i). We now proceed with proving part (ii). Using the integral 
representation (2.6), one can easily derive 

di n g(x; a, b, c) = w (t) exp[-x(t + c)] dt, 
dx 

with co(t) = (a - b)(1 - e-) + e(c-a)t -e(c-b)t. Since c(t) is an increasing func- 
tion of c, it suffices to prove the positivity of c(t) when c = a. If c = a, we have 

'(t) = (a - b)e-' -(a - b)e(ab)t, c = a, t > 0, 

which is clearly nonnegative for t > 0. Thus c(t) is nondecreasing on (0, cx). On the 
other hand, co(0) = 0. Therefore w(t) > 0 for t > 0 and c > a, which implies the 
complete monotonicity of ln g(x; a, b, c). Finally, part (ii) follows from the lemma 
mentioned at the beginning of this section. 

3. Proofs of Theorems 4-8. We start by proving Theorem 4. 
Proof of Theorem 4. Let -h(x) denote the logarithm of the function (1.11). 

Therefore, 

____) F'(x +1I) 2 2F'(x + __2_ 

h'(x) = +r(x) r(x + I) - r(x+) - x - x 

and using (2.3) we obtain the integral representation 

h'(x) = 2f e1 (e-t - 1) + f [ee(2-)t e-2xt dt 

00 e 
x 

=|0ji + ,[2(e -1) +(et - 1)(1 + e t)] dt 

10 2x +( X,t ( ) 

- e2x (e-) 

(1 - e -t) dt. 
This proves the complete monotonicity of h'(x) on (i, oo), hence e- h(,) is also 
completely monotonic on (-2, oo). 
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Proof of Theorem 5. As in the above proof, let the function in (1.12) be e-w(x). 
Similarly, we derive 

0 e- 2xt1 1 
w'(x) 2 - -et) + 

21t X (1-e-t) +JXe2tetld 1 + e 2x +o 1 
=| e- 2xt (d 

- 2f 1e2- e (1 - e-t) + f e2xt (e-t - 1) dt 

(00 -x(1 -et2 
-J e2 dt, 

which establishes Theorem 5. 
Proof of Theorem 6. Let q(x; a, b) = -lnp(x; a, b). Applying (2.6) we obtain 

q'(x;a,b)=J e -tx 

q'(x; a, b) = (1 - et) (1 - e-at)(1 - e-bt) dt, 

which implies the complete monotonicity of q'(x; a, b) on (0, 0o). Finally, Lemma 
2.1 establishes the complete monotonicity of p(x; a, b) on (0, 0o) and the proof is 
complete. 

Our proof of Theorem 7 relies on 

LEMMA 3.1. Let 0 < a < b andy > 0. Then 

(y + a )-n _ (y + b )-n > (b -a)n[y +(a + b)12]-n 
-I n > O. 

Proof. Let c = (a + b)/2, d = (b-a)/2, so a = c- d, b= c + d. Clearly 
0 < d/c < 1, and the binomial theorem yields 

?? 
(n)k( d k 

(y + a) 
- 

-(y + b)-n = (y + C)n -)! y )[+ c1k 
k=O 

> 2nd(y + Cyn-l. 

We now prove Theorem 7. 
Proof of Theorem 7. Let the functions in (1.17) and (1.18) be exp(-h1(x)), 

j = 1, 2, respectively. It is clear that 

h'(x) = 4(x + 1) - + (x + s) +(s - 1)4'(x +(s + 1)/2). 

Using [2, p. 15], 

(3.1) (x) =-Y - + [L- 2]' 
we obtain 

) l[x + n + s x + n + [x + n +(s + 1)/2Z 2 

Therefore 

( !) (n+ 1) ( x) 

00 

= E [(x + k + S)n-1-(x + k + 1)-n-1 
k=O 

+(n + 1)(s - 1){x + k +(s + 1)/2}-n 21 
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and the positivity of (_l)nh(n+1)(x) on (0, oo), 0 < s < 1, follows from Lemma 3.1. 
Similarly, 

t2( =x +s,/2+ x+k+ 1 x+1ki+s} 

00 

= j e-xt[(l - s)e-st/2 +(e-t - eSt)/(1 - et)] dt 

00-xs24t sinh{f(1 - s) t/2} ]t. 
e1? A~1 -[ S - sinh(t/2) j 

The complete monotonicity of h'(x) now follows from the positivity of 

(1 - s)sinh(t) - sinh(1 - s)t 

on(0,oo)for0 < s < 1. 
Proof of Theorem 8. Let h3(x) and h4(x) denote logarithms of the functions in 

(1.19) and (1.20), respectively. The series representation (3.1) gives 

_ _ _ _ _ _ _ 1 (s 1 

3( ) [x + S + k x + 1 + k (x+k+W)2] 

=(1 
- ) k[|(X + 1 + k)(x + s + k) -(x + k + W)2] 

But (X + W)2 - (X + 1)(X + s) = -X(1 - W)2, which is negative for 0 < s < 1. 
This shows that h3(x) < 0. Similarly, one can show that 

h4(X/(l-) =k=O (X+ + k)( + 2+k 

11 1 1 

Ao +k -2+ + X + + k + s + + (X+ +k) + s k k . 

Observe that 

(X+ S)(X+ 1) -(X- 2 + s += _)(X++ +4) 

=BX(s + 1-2_s + 4i)<h forX> 0,0gsv 0 < s < 1. 

This proves the negativity of hh(x) and the proof is complete. 

4. Related Inequalities and Infinitely Divisible Distribution. Recall that [2, (4), p. 
49] 

(4.1) F(+ ) + x as +k)(x + 2- a . 
Therefore f (X) -~1 as x oo , where f iS as in (1.8). Corollary 2 gives 

f(x)>1 forx> -cwhenc , 

f(X)< 1 for x > - k when c > I . 
In particular, 

L42 2 F X+l ,, X>-4 

Th ineualte () ar th sams + x +J(x1+5). 

Thspoethe inqaltes at(4.2) are the same asd (1.5). s omlee 
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The inequalities (1.6) similarly follow from Theorems 4 and 5 and the asymptotic 
relationship (4.1). This actually proves the following stronger version of (1.6), 

(4.3) (1 + 1/2x)1/2 < 1 + O(x)/x < (1 - 1/2x)"12, x > 

The inequalities (1.7) follow easily from (4.2) and (4.3), again with n treated as a 
continuous parameter greater than 1. 

We now explore implications of Theorems 6, 7, 8. The asymptotic relationship 
(4.1) shows that lim x p(x; a, b) = 1. Therefore, in view of Theorem 6, we get 

(4.4) 1 < (x)J'(x + a + b) x > O a b > O. 
J'(x +a)J'F(x +b)' x OabO 

This is a generalization of (1.4), because 

F(x + a)J'(x + b) = 2F1(-a, -b; x; 1), Rex > -a - b. 

The above 2F1 is obviously completely monotonic if there is a nonnegative integer n 
such that n + 1 > a, b > n or if min(a, b) = n. In all other cases, Theorem 6 gives 
the complete monotonicity of the functions appearing in (4.5) and provides the 
generalization alluded to in Section 1. On the other hand, the asymptotic formulas 
(4.1) and [2, p. 47], 

(4.6) +(x) lnx asx -*o, 

show that as x -* o the functions (1.17)-(1.20) tend to 1. This and Theorems 7 and 
8 give Kershaw's inequalities (1.15) and (1.16). 

Finally, we discuss related infinitely divisible distributions. 
Definition. A probability measure d,u is infinitely divisible if for every positive 

integer n there exists a probability measure dln such that 

d,u dlin * dlln * ..* dlln 7 

n-times 

where * denotes convolution. 
The connection between infinitely divisible probability measures supported on 

(0, ox) and completely monotonic functions is the following, Feller [3]. 

LEMMA 4.1. A probability measure d,u with supp d,u c (0, oo) is infinitely divisible if 
and only if 

0 
| e-xtdju(t) = e -h(x)9 X >, 0, 

with h(0) = 0 and h'(x) completely monotonic on (0, oo). 

Lemma 4.1 and the proofs of Theorems 3, 4, 5, 6, and 7 establish Theorem 4.2 
below. 

THEOREM 4.2. The following functions are Laplace transforms of infinitely divisible 
probability distributions: 

(i) g(x + a + ;a, b, c)/g(a + ;a, b, c), if - > 0, 2c < a + b-1 and (1.9) 
holds; 

(ii) g(x + /3 + 8; a, b, c)/g(, + e;a, b, c), if E > 0, c > a and (1.9) holds; 
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(iii) w1(x + 8)/wl(8), if 8 > 0, where 

w1(x) = [1 -(2x + 1)-l]'1/2F2(x + 1)/[F(x + 1)F(x + 3)]; 
(iv) w2(x + E)/w2(8), if 8 > 0 and 

w2(x) = [1 + 1/(2x)]"-12f(x)f(x + l)/F2(x + 1/2); 

(v) p(x + e;a, b)/p(8; a, b), a, b, > 0; 
(vi) W3(X + 8)/w3(8), 8 > 0, 0 < s ? 1, where W3(X) is the function in (1.17); 
(vii) w4(x + -)/w4(8), for 8 > 0, 0 < s < 1, and w4(x) denotes the function in 

(1.18). 
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